Contractile properties of human nasal dilator motor units.
نویسندگان
چکیده
The technique of intramuscular microstimulation was used to activate facial nerve fibers while acquiring simultaneous twitch force measurements to measure the contractile properties and force-frequency responses of human nasal dilator (ND) motor units. Twitch force amplitude (TF), contraction time (CT), half-relaxation time (HRT), and the maximal rate of rise of force normalized to the peak force (maximum contraction rate, MCR) were recorded from 98 ND motor units in 37 subjects. The average CT, HRT, MCR, and TF were 47.9 +/- 1.8 ms, 42.6 +/- 2.1 ms, 28.6 +/- 1.8 s-1, and 1.06 +/- 0.1 mN, respectively. Neither CT nor HRT were significantly correlated with TF. The average CT and HRT were similar to values recorded for small muscles of the hand but were faster than the values recorded from human toe extensor motor units. However the lack of an association between twitch force and CT or HRT was similar to the findings obtained for both human hand and foot muscles. Force-frequency curves were recorded from eight ND motor units. The force produced by the eight motor units was recorded in response to stimuli delivered at 1, 5, 10, 15, 20, 25, 30, 35, and 40 Hz to assess force-frequency relationships. The mean twitch force of the eight motor units was 0.91 +/- 0.3 mN and the average tetanic force was 8.1 +/- 1.8 mN. Therefore the average twitch force was equal to 12.7% of the tetanic force. Fifty percent of the unit tetanic force was achieved at an average frequency of 16. 4 +/- 1.7 Hz, which is greater than the value recorded for human toe extensor motor units (9.6 Hz). Thus the force produced by the ND motor units was more sensitive to changes in discharge frequency over the range of approximately 10-30 Hz and less sensitive to changes in the range of 0-10 Hz because of their fast contractile properties. The mean slope of the regression lines that were fit to the steep portion of each force-frequency curve was 5.15 +/- 0.5% change in force/Hz. This value was greater than the slope measured for human toe extensor muscles (4.2% change in force/Hz). These observations suggest that force gradation by ND motor units is more sensitive to changes in stimulation frequency than human toe extensor motor units. We conclude that most ND motor units have fast contractile properties and that rate coding may play a significant role in the gradation of force produced by the ND muscle. Furthermore, the findings of this investigation have demonstrated that contractile speed and TF in a human facial muscle are not correlated. This supports previous findings obtained from human hand and foot muscles and suggests that there may be a fundamental difference in the contractile speed-twitch force relationship between many human muscles and most muscles of other mammals.
منابع مشابه
Contractile and electrical properties of human motor units in neuropathies and motor neurone disease.
The contractile and electrical properties of motor units in the first dorsal interosseous muscle of the hand have been studied in 26 patients with ulnar neuropathies and motor neurone disease (amyotrophic lateral sclerosis). Among patients with unilateral pressure or entrapment ulnar neuropathies, there was a tendency for the twitch tensions for single motor units to be smaller, while the surfa...
متن کاملTwitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.
Little is known about how human motor units respond to chronic paralysis. Our aim was to record surface electromyographic (EMG) signals, twitch forces, and tetanic forces from paralyzed motor units in the thenar muscles of individuals (n = 12) with chronic (1.5-19 yr) cervical spinal cord injury (SCI). Each motor unit was activated by intraneural stimulation of its motor axon using single pulse...
متن کاملCharacteristics of surface mechanomyogram are dependent on development of fusion of motor units in humans.
The purpose of this study was to test whether surface mechanomyogram (MMG) recorded on the skin reflects the contractile properties of individual motor units in humans. Eight motor units in the medial gastrocnemius muscle were identified, and trains of stimulation at 5, 10, 15, and 20 Hz were delivered to each isolated motor unit. There was a significant positive correlation between the duratio...
متن کاملAge-related changes in the twitch contractile properties of human thenar motor units.
The purpose of this study was to examine the effects of aging on the contractile and electrophysiological properties of human thenar motor units (MUs). Percutaneous electrical stimulation of single motor axons within the median nerve was used to isolate and examine the twitch tensions, contractile speeds, and surface-detected MU action potential (S-MUAP) sizes of 48 thenar MUs in 17 younger sub...
متن کاملComparison of contractile responses of single human motor units in the toe extensors during unloaded and loaded isotonic and isometric conditions.
Much of the repertoire of muscle function performed in everyday life involves isotonic dynamic movements, either with or without an additional load, yet most studies of single motor units measure isometric forces. To assess the effects of muscle load on the contractile response, we measured the contractile properties of single motor units supplying the toe extensors, assessed by intraneural mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 1 شماره
صفحات -
تاریخ انتشار 1998